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Forecasting Stock Market 
Volatility
Michael Stamos

KEY FINDINGS

n The task of volatility forecasting can be simplified when avoiding modeling overhead and 
by treating it identically to other forecasting problems.

n More complex models like autoregressive conditional heteroskedasticity (ARCH) and 
generalized ARCH (GARCH) do not improve forecasting accuracy for the US stock market 
when benchmarked against simple estimators. The use of option implied volatility data 
only marginally improves forecasts.

n Negative return–based and intraday data–based models provide significant added value 
in forecasting accuracy compared to benchmark models. 

ABSTRACT

Volatility as a measure of investment risk is widely accepted by academic researchers and 
industry professionals and has become ubiquitous in investment analysis. Furthermore, it is 
among the few financial variables that exhibit predictable time variation. Hence, there is an 
extensive amount of literature describing volatility models and assessing their forecasting 
power. This article provides a discussion of the prominent models and compares them in 
a unified notation framework. The empirical analysis shows that it is hard to outperform 
even simple trailing variance–type models. Autoregressive conditional heteroskedasticity 
(ARCH), generalized ARCH (GARCH), implied volatility, asymmetric, and seasonal models 
hardly improve forecasts despite added complexity. In this study, only momentum-based 
and intraday data–based models improved predictive accuracy significantly.

Volatility may be—behind holding-period return—the most used quantitative 
measure in financial analysis. The measurement and prediction of volatility is 
done countless times daily within financial and insurance industries. Therefore, 

many academic and financial industry researchers come across numerous methods 
and models that determine and predict volatility. 

It is fascinating to see the different approaches of modeling volatility; some 
use prespecified estimators, for instance, realized trailing variance or exponentially 
weighted variance,1 and then there are more rigorous models such as autoregres-
sive conditional heteroskedasticity (ARCH) as introduced by Engle (1982) and gen-
eralized ARCH (GARCH) as proposed by Bollerslev (1986), with all existing variants. 
Furthermore, there are models rooting from the financial engineering fields, such as 
stochastic volatility models. When reading different volatility studies, there seems 
to be hardly common ground with respect to modeling approaches and notation. In 
fact, most well-known volatility models use vastly different notation and are applied 

1 A good reference is Zangari (1994) describing the methodology used in RiskMetrics™.
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in different model worlds, making it diffi cult to comprehend what exactly the theoret-
ical differences and comparative model benefi ts are, for instance, of simple trailing 
volatility, a GARCH model, an implied volatility model, and an exponential variance 
model. Further comparisons are often done only pairwise and for different types of 
data and time frame.

In what follows, this article provides an overview of prominent volatility models 
using a common notation to make models directly comparable. Using a common 
notational framework allows identifying exactly where models contrast and where 
they overlap and intersect. This is done by embedding those volatility models into 
the notation of standard time-series models, marrying econometrical and fi nancial 
notation. Then, an empirical analysis compares the forecast accuracy of the well-
known and additional less conventional models for the common dataset that is US 
equities while controlling for complexity by restricting the number of tunable param-
eters. The study’s time frame is January 2000 to December 2020 using daily data. 
The additional use of intraday data to predict daily volatility does not permit going 
further back in history. On the other hand, the study covers the three major stock 
market crises, the dot-com bubble, the Global Financial Crisis, and the 2020 COVID 
crash, which all represent very different types of market corrections.

THE VOLATILITY FORECASTING PROBLEM

To allow formulaic comparisons between different volatility models, the common 
notational ground must be defi ned fi rst. This section provides a model-free specifi ca-
tion of the volatility forecasting problem. Let us start with the defi nition of time-varying 
volatility of asset returns rt available for the periods t = 1, …, T

σ =t Vt Vσ =t Vσ = ARt VARt V t( )σ =( )σ =t V( )t Vσ =t Vσ =( )σ =t Vσ = [ ]r[ ]rt[ ]trtr[ ]rtr

with VAR denoting variance, and variance defi ned as

= −VAR r E r= −E r= − E rt tE rt tE r t[ ]R r[ ]R rt t[ ]t tR rt tR r[ ]R rt tR r [ ]= −[ ]= −E r[ ]E r= −E r= −[ ]= −E r= −t t[ ]t tE rt tE r[ ]E rt tE r [ ]E r[ ]E rt[ ]tE rtE r[ ]E rtE r2 2E r2 2E r[ ]2 2[ ] [ ]2 2[ ]E r[ ]E r2 2E r[ ]E r

To simplify notation, set E[rt ] = c, and c = 0 without loss of generality. For all 
practicality of forecasting fi nancial time series, E[rt ]

2 can often be assumed to be 
negligible because E[rt ] is close to zero and the square of it even more so. Now, we 
defi ne the variable yt, which is the squared return of an asset y r=y r=t ty rt ty r2. Hence, we get 

=VAR r E yt tE yt tE y[ ]R r[ ]R rt t[ ]t tR rt tR r[ ]R rt tR r [ ]E y[ ]E yt t[ ]t tE yt tE y[ ]E yt tE y

This takes us back to standard methodology to derive estimated forecasts for yt

that get the label E yt
ˆ[ ]E y[ ]E yt[ ]t  and to use the standard ways to assess forecasting accuracy. 

Forecasting variance is the same as forecasting squared returns. The advantage of 
looking at the forecasting problem in this way is the parsimonious nature and that 
volatility forecasting is treated as any other forecasting problem. Forecasted volatility 

is then defi ned by σ =t Et Eσ =t Eσ = ytˆ( )σ =( )σ =t E( )t Eσ =t Eσ =( )σ =t Eσ = ˆ[ ]y[ ]yt[ ]t .
For calibration, the standard estimation framework can be used. For instance, 

using ordinary least squares, the preceding equations can be fi tted by minimizing 
the mean squared error in

∑= −
=

MSQE T y∑T y∑= −T y= −∑= −∑T y∑= −∑ E y
t

T

t tE yt tE y1 /= −1 /= −(  = −(  = −T y(  T y= −T y= −(  = −T y= −t t(  t t
ˆ[ ]E y[ ]E yt t[ ]t tE yt tE y[ ]E yt tE y )

1

2
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TIME-SERIES MODELS

Having defi ned the model-free volatility forecasting problem as a straightforward 
time-series forecasting problem allows for plugging in standard time-series models to 
create the forecasts and to evaluate their predictive accuracy. Standard time-series 
models are defi ned as follows:

 1. White noise: = + εy a= +y a= +t t= +t t= + εt tεy at ty a= +y a= +t t= +y a= +
 2. Auto-regressive AR(p) model: = + Σ + ε= −y a= +y a= + b yΣ +b yΣ +b y= −b y= −t i= +t i= + Σ +t iΣ +y at iy a= +y a= +t i= +y a= + pΣ +pΣ +i tΣ +i tΣ += −i t= −b yi tb yΣ +b yΣ +i tΣ +b yΣ +b yi tb y= −b y= −i t= −b y= −i tΣ +i tΣ + εi tε1Σ +1Σ += −1= −

 3. Moving-average MA(q) model: = + Σ ε + ε= −y a= +y a= + Σ εcΣ εt i= +t i= + Σ εt iΣ εy at iy a= +y a= +t i= +y a= + qΣ εqΣ εi tΣ εi tΣ ε= −i t= −i t+ εi t+ ε1Σ ε1Σ ε= −1= −

 4.  Auto-regressive moving average ARMA(p,q) model: = + Σ += −y a= +y a= + Σ +b yΣ +t i= +t i= + Σ +t iΣ +y at iy a= +y a= +t i= +y a= + pΣ +pΣ +i t1 1Σ +1 1Σ += −1 1= −b y1 1b yΣ +b yΣ +1 1Σ +b yΣ += −b y= −1 1= −b y= −i t1 1i tΣ +i tΣ +1 1Σ +i tΣ += −i t= −1 1= −i t= −b yi tb y1 1b yi tb yΣ +b yΣ +i tΣ +b yΣ +1 1Σ +b yΣ +i tΣ +b yΣ += −b y= −i t= −b y= −1 1= −b y= −i t= −b y= −i i1 1i iΣ +i iΣ +1 1Σ +i iΣ +
Σ + Σ ε + ε= −Σ εcΣ εqΣ εqΣ εi tΣ εi tΣ ε= −i t= −i t+ εi t+ ε1 1Σ +1 1Σ + Σ ε1 1Σ ε= −1 1= −i i1 1i iΣ +i iΣ +1 1Σ +i iΣ + Σ εi iΣ ε1 1Σ εi iΣ ε

 5. ARMAX(p,q,m) model to include m exogenous predictor variables xi,t: 

∑ ∑ ∑= + + ε∑ ∑+ ε∑ ∑ + + ε
=∑ ∑=∑ ∑ =

y a= +y a= + ∑ ∑b y∑ ∑ c d∑c d∑+ εc d+ ε + +c d+ +∑+ +∑c d∑+ +∑+ +x+ +t i∑ ∑t i∑ ∑= +t i= + ∑ ∑=∑ ∑t i∑ ∑=∑ ∑y at iy a= +y a= +t i= +y a= + ∑ ∑b y∑ ∑t i∑ ∑b y∑ ∑i∑ ∑i∑ ∑∑ ∑t i∑ ∑i∑ ∑t i∑ ∑p∑ ∑p∑ ∑∑ ∑t i∑ ∑ i+ εi+ ε+ εc d+ εi+ εc d+ ε
q

t i−t i−c dt ic di+ +i+ +
i

m

i t+ +i t+ + t1 1∑ ∑1 1∑ ∑ =1 1=∑ ∑b y∑ ∑1 1∑ ∑b y∑ ∑∑ ∑t i∑ ∑1 1∑ ∑t i∑ ∑∑ ∑b y∑ ∑t i∑ ∑b y∑ ∑1 1∑ ∑b y∑ ∑t i∑ ∑b y∑ ∑∑ ∑t i∑ ∑1 1∑ ∑t i∑ ∑∑ ∑−∑ ∑t i∑ ∑−∑ ∑1 1∑ ∑−∑ ∑t i∑ ∑−∑ ∑ i1 1i 1 , 1+ +, 1+ +−, 1−i t, 1i t+ +i t+ +, 1+ +i t+ +

 6. Any other function: = + εy f= +y f= += +x y= +t t= +t t= + εt tεy ft ty f= +y f= +t t= +y f= +x yt tx y= +x y= +t t= +x y= +( ,= +( ,= += +x y= +( ,= +x y= +t t( ,t t= +t t= +( ,= +t t= +x yt tx y( ,x yt tx y= +x y= +t t= +x y= +( ,= +x y= +t t= +x y= +)= +)= +t t)t t= +t t= +)= +t t= +
 With errors ε = y E−y E− yt tε =t tε = y Et ty E t[ ]y[ ]yt[ ]t , ε =E t[ ]ε =[ ]ε =t[ ]tε =tε =[ ]ε =tε = 0

Modeling-wise that is suffi cient to empirically forecast volatility in a parsimonious 
fashion avoiding large purely fi nancial modeling overhead. The quality of the forecast 
will mostly depend on the predictive ability of the predictor variables rather than the 
complexity of the model.

EMBEDDING PROMINENT VOLATILITY MODELS INTO STANDARD 
TIME-SERIES MODELS

Interestingly, prominent volatility models can be easily reconciled with the unifying 
notation shown earlier, achieving a better formulaic understanding of their interde-
pendencies. Using ε = y E−y E− yt tε =t tε = y Et ty E t[ ]y[ ]yt[ ]t  and σ = E yt tσ =t tσ = E yt tE y[ ]E y[ ]E yt t[ ]t tE yt tE y[ ]E yt tE y2σ =2σ =  gives the following relationships:

 1. Constant variance σ = σtσ =tσ =2 2σ =2 2σ = σ2 2σ is a white-noise model with σ = a2σ =2σ = .
 2. Realized variance σ = × Σ = −N r× ΣN r× Σt iσ =t iσ = N rt iN r× ΣN r× Σt i× ΣN r× ΣnN rnN rt i= −t i= −N rt iN r1/t i1/t i

2σ =2σ = 1= −1= −N r1N r2 , with N being the number of trailing obser-

vations, is a restricted form of an AR(p) model with a = 0, = == =b
p

i pi

1
, 1= =, 1= =i p, 1i p= =i p= =, 1= =i p= =i p, ,i p…i p…, ,…i p… .

 3. Exponential variance σ = λ σ + − λ− −rt tσ =t tσ = λ σt tλ σ t− −t− −rtr  (λ σ  (λ σ + −  (+ −− −  (− −t t  (t tλ σt tλ σ  (λ σt tλ σ 1 )+ −1 )+ − λ1 )λ− −1 )− −
2σ =2σ = 1  (1  (− −  (− −1− −  (− −

2  (2  ( 1
2  with weighting factor ≤ λ0 1≤ λ0 1≤ λ ≤0 1≤

is an ARMA(p,q) case with = = = = −λa p=a p= b q= = =b q= = = c0,a p0,a p 1,= = =1,= = =1,b q1,b q= = =b q= = =1,= = =b q= = = 1,   c   c .
 4. ARCH(m) model σ = ω + Σ α= −rt iσ =t iσ = ω +t iω + Σ αt iΣ αmΣ αmΣ α i t= −i t= −ri tr i

2σ =2σ = 1Σ α1Σ α= −1= −
2  is an AR(p) model with m p=m p= , ω = α =a bα =a bα =i iα =i iα =a bi ia bα =a bα =i iα =a bα =, a b, a b .

 5. GARCH(m,n) σ = ω + Σ α + Σ β σ= − = −β σ= −β σrt iσ =t iσ = ω +t iω + Σ αt iΣ αmΣ αmΣ α i t= −i t= −ri tr i i+ Σi i+ Σn
i tβ σi tβ σ= −i t= −β σ= −β σi tβ σ= −β σ i

2σ =2σ = 1Σ α1Σ α= −1= −
2

1= −1= −
2  is an ARMA(p,q) model with 

= = ω = α = β =m p= =m p= =n q= =n q= = a bα =a bα = ci iα =i iα =a bi ia bα =a bα =i iα =a bα = i iβ =i iβ = ci ic,  , ,ω =, ,ω = a b, ,a b , .

Volatility forecast models that were hardly comparable before can now be better 
contrasted by aligning their notation using standard time-series models framing. All of 
the presented volatility models are in fact versions of a standard time-series model. 
The author believes that the connection between volatility models and standard 
time-series models has not been clarifi ed before succinctly and hopes this article 
can facilitate the understanding of many students, academics, and industry profes-
sionals. The intent is that the simplifi ed volatility forecasting framework allows us to 
seamlessly extend the parsimonious forecasting models aiming to improve forecasts, 
as demonstrated in the following analysis.
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EMPIRICAL ANALYSIS TO FORECAST THE VOLATILITY 
OF US EQUITIES

Using the preceding defi nitions, we run a case study as a proof of concept. We 
use daily returns of the S&P 500 Index realized during the years 2000 to 2020. The 
dependent variable of the forecast problem is defi ned as the daily squared return as 
described in “The Volatility Forecasting Problem.”2 We run the estimations for the mod-
els described in “Embedding Prominent Volatility Models into Standard Time-Series 
Models” with the idea to serve as benchmarks:

 1. White noise/Constant variance: = + εy a= +y a= +t t= +t t= + εt tεy at ty a= +y a= +t t= +y a= +

 2. Restricted AR(p)/Realized variance: = + Σ + ε= −y a= +y a= +
p

b yΣ +b yΣ += −b y= −t i= +t i= + Σ +t iΣ +y at iy a= +y a= +t i= +y a= + pΣ +pΣ +i tΣ +i tΣ += −i t= −b yi tb yΣ +b yΣ +i tΣ +b yΣ += −b y= −i t= −b y= −i tΣ +i tΣ + εi tε
1

1Σ +1Σ += −1= −

 3. Restricted ARMA(1,1)/Exponential variance: = + ε + ε− −y y= +y y= + ct t= +t t= +y yt ty y= +y y= +t t= +y y= + t tε +t tε + εt tε1 1= +1 1= + ε +1 1ε +− −1 1− −c1 1c t t1 1t tε +t tε +1 1ε +t tε +− −t t− −1 1− −t t− −

 4. AR(p)/ARCH: = + Σ + ε= −y a= +y a= + b yΣ +b yΣ +b y= −b y= −t i= +t i= + Σ +t iΣ +y at iy a= +y a= +t i= +y a= + pΣ +pΣ +i tΣ +i tΣ += −i t= −b yi tb yΣ +b yΣ +i tΣ +b yΣ +b yi tb y= −b y= −i t= −b y= −i tΣ +i tΣ + εi tε1Σ +1Σ += −1= −

 5. ARMA(p,q)/GARCH: = + Σ + Σ ε + ε= − = −y a= +y a= + Σ +b yΣ + Σ εcΣ εt i= +t i= + Σ +t iΣ +y at iy a= +y a= +t i= +y a= + pΣ +pΣ +i t
qΣ εqΣ εi tΣ εi tΣ ε= −i t= −i t+ εi t+ εΣ ε   Σ εΣ εcΣ ε   Σ εcΣ εΣ εi tΣ ε   Σ εi tΣ ε1 1Σ +1 1Σ + Σ ε1 1Σ ε= −1 1= − = −1 1= −b y1 1b yΣ +b yΣ +1 1Σ +b yΣ += −b y= −1 1= −b y= −i t1 1i tΣ +i tΣ +1 1Σ +i tΣ += −i t= −1 1= −i t= −b yi tb y1 1b yi tb yΣ +b yΣ +i tΣ +b yΣ +1 1Σ +b yΣ +i tΣ +b yΣ += −b y= −i t= −b y= −1 1= −b y= −i t= −b y= −i i1 1i iΣ +i iΣ +1 1Σ +i iΣ + Σ εi iΣ ε1 1Σ εi iΣ εΣ +   Σ +1 1Σ +   Σ + Σ ε   Σ ε1 1Σ ε   Σ εΣ +i tΣ +   Σ +i tΣ +1 1Σ +i tΣ +   Σ +i tΣ +Σ +b yΣ +i tΣ +b yΣ +   Σ +b yΣ +i tΣ +b yΣ +1 1Σ +b yΣ +i tΣ +b yΣ +   Σ +b yΣ +i tΣ +b yΣ +i i   i i1 1i i   i iΣ +i iΣ +   Σ +i iΣ +1 1Σ +i iΣ +   Σ +i iΣ + Σ εi iΣ ε   Σ εi iΣ ε1 1Σ εi iΣ ε   Σ εi iΣ ε

  Furthermore, we add fi ve models to have parsimonious cases of the general 
model class = + εy f= +y f= += +x y= +t t= +t t= + εt tεy ft ty f= +y f= +t t= +y f= +x yt tx y= +x y= +t t= +x y= +( ,= +( ,= += +x y= +( ,= +x y= +t t( ,t t= +t t= +( ,= +t t= +x yt tx y( ,x yt tx y= +x y= +t t= +x y= +( ,= +x y= +t t= +x y= +)= +)= +t t)t t= +t t= +)= +t t= + , with x being exogenous predictive variables

 6. Asymmetric exponential variance: =
+ ε + ε

+ ε + ε <













y
y c+ εy c+ ε− −y c− − if

y c+ εy c+ ε− −y c− − if r
t

ty cty cu+ εu+ εt t+ εt t+ ε t

ty cty cd+ εd+ εt t trtr

,    0≥  0≥r  0rt  0trtr  0rtr

  ,+ ε  ,+ εt t  ,t t+ εt t+ ε  ,+ εt t+ ε    if   if 0 
1 1+ ε1 1+ ε− −1 1− −y c1 1y c+ εy c+ ε1 1+ εy c+ ε− −y c− −1 1− −y c− −t t1 1t t− −t t− −1 1− −t t− −

1 1+ ε1 1+ ε− −1 1− −y c1 1y c+ εy c+ ε1 1+ εy c+ ε− −y c− −1 1− −y c− −t t1 1t t  ,1 1  ,+ ε  ,+ ε1 1+ ε  ,+ ε− −  ,− −1 1− −  ,− −t t  ,t t1 1t t  ,t t− −t t− −  ,− −t t− −1 1− −t t− −  ,− −t t− −

 7. Seasonal: = + × + × + εy a= +y a= + d w× +d w× +eek× +eek× + d w× +d w× +eek× +eek× +t t= +t t= +y at ty a= +y a= +t t= +y a= + d wt td w t t× +t t× + εt tεd w   d w1 2× +1 2× +d w1 2d w× +d w× +1 2× +d w× +× +eek× +1 2× +eek× + d w1 2d wt t1 2t t× +t t× +1 2× +t t× +d wt td w1 2d wt td w× +d w× +t t× +d w× +1 2× +d w× +t t× +d w× +eekt teek1 2eekt teek× +eek× +t t× +eek× +1 2× +eek× +t t× +eek× +d wt td w   d wt td w1 2d wt td w   d wt td w× +d w× +t t× +d w× +   × +d w× +t t× +d w× +1 2× +d w× +t t× +d w× +   × +d w× +t t× +d w× +   1 2   d w   d w1 2d w   d w 2× +2× + , with weekt equaling the cur-
rent week number of year minus 26.

 8. Implied volatility: = + × + ε−y a= +y a= + d I× +d I× +V× +V× +t t= +t t= + × +t t× +y at ty a= +y a= +t t= +y a= + d It td I× +d I× +t t× +d I× +× +V× +t t× +V× + td It td I   d It td I× +d I× +t t× +d I× +   × +d I× +t t× +d I× +1× +1× +2× +2× + , with = λ + − λ ×IV ivtIVtIV RV
t t  (+ −  (+ −−  (−IV  (IVt  (tIVtIV  (IVtIV 1 )+ −1 )+ − λ ×1 )λ ×2

1  (1  (2 2+ −2 2+ − λ ×2 2λ × iv2 2ivIV2 2IVλ ×IVλ ×2 2λ ×IVλ ×  (2 2  (+ −  (+ −2 2+ −  (+ −1 )2 21 )+ −1 )+ −2 2+ −1 )+ − λ ×1 )λ ×2 2λ ×1 )λ ×λ ×IVλ ×1 )λ ×IVλ ×2 2λ ×IVλ ×1 )λ ×IVλ × , with 
ivt being the at-the-money implied volatility of S&P 500 options at close of 
day t and IVtIVtIV 2 the exponentially weighted average of single-day implied vari-
ances. The daily time series of implied volatilities is sourced from Bloomberg. 
Using option implied volatilities for forecasting has been studied before with 
mixed results. For instance, Jorion (1995) tested currency option volatilities 
without fi nding a marginal added value while Blair, Poon, and Taylor (2001) 
found that option implied data provides the best forecast accuracy among 
their set of tested alternatives. Christensen and Prabhala (1998) showed for 
monthly equity market data that option implied information improves vola-
tility forecasts relative to pure historical ones. Poon and Granger’s (2005) 
meta-analysis found that most empirical studies indicate that option implied 
data models dominate pure time-series models.

 9. Negative momentum: = + × + ε−y a= +y a= + d m× +d m× +× +om× +t t= +t t= + × +t t× +y at ty a= +y a= +t t= +y a= + d mt td m× +d m× +t t× +d m× +omt tom× +om× +t t× +om× + t1× +1× +2× +2× + , with = λmom m= λm m= λtm mtm mmom mmom mmm mmm m t  (+ −  (+ −−  (−m m  (m mom  (omt  (t 1  (1  (
+ − λ ×r Iλ ×r Iλ ×moλ ×moλ ×mλ ×mλ ×tλ ×tλ ×λ ×r Iλ ×tλ ×r Iλ ×

t
  (+ −  (+ −1 )+ −1 )+ − λ ×1 )λ ×λ ×moλ ×1 )λ ×moλ ×λ ×mλ ×1 )λ ×mλ ×

{ 0<{ 0<r{ 0rt{ 0trtr{ 0rtr }
 denoting the exponentially weighted past average negative 

market return.
 10. Intraday: = + × + ε−y a= +y a= + d R× +d R× +V× +V× +t t= +t t= + × +t t× +y at ty a= +y a= +t t= +y a= + d Rt td R× +d R× +t t× +d R× +× +V× +t t× +V× + t1× +1× + , with = λ + − λRV rvtRVtRV RV

t
RV

t  (+ −  (+ −−  (−RV  (RVt  (tRVtRV  (RVtRV 1 )+ −1 )+ − λ1 )λRV1 )RV
1  (1  ( , with rvt

being the realized variance of 10-minute returns on day t and RVt the expo-
nentially weighted average of single-day variances. The 10-minute-wise S&P 
500 Index time series is provided by Refi nitiv. Previously, Blair, Poon, and 
Taylor (2001) tested the value of intraday returns for forecasting S&P 100 
volatility and found it to be insignifi cant.

2 Regarding the length of the forecast horizon. In a sense, the model calibration selects the right 
forecast horizon itself. When optimizing the different models, the parameters will defi ne how fast the 
forecasts are moving. Fast-moving forecasts imply high short-term predictability, whereas slow-moving 
forecasts imply low predictability. Slow-moving forecasts also imply that the effective forecast horizon 
is longer. A hypothetical case is to forecast the daily market return itself. Due to very low predictability, 
models will automatically produce very slow-moving forecasts, hence effectively very long-term forecasts.
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Notably, the number of tuning parameters is three or lower for all models.3

The calibration of these models is done by numerically minimizing the mean of the 
squared errors (MSQE). The results of the calibration are reported in Exhibit 1.

Exhibit 2 presents the development of volatility forecasts of optimal models over 
time. From optical inspection, the optimal calibrated models behave in a similar way 
throughout the period, except—of course—the constant variance model and the 
purely seasonal one. Notable differences can be observed in the noisiness of the 
forecasts over time, with the ARCH model forecasts on the high side because only 
very limited trailing data are used as well as for the intraday model.

The results in terms of forecast accuracy are reported in Exhibit 3. The exhibit 
shows the reduction of the MSQE relative to the one of the constant variance model. 
Overall, most models provide an improvement of forecasting accuracy of roughly 
25% compared with the best constant variance estimate. Hence, from an average 
predictive accuracy level point of view, we cannot confi rm the forecasting powers of 
around 50% as documented in Poon and Granger (2005) anymore; the reason might 
be their studied time frame ended in July 2003 so that volatility levels seen during 
the Great Financial Crisis of 2008 and the coronavirus crash of 2020 were simply not 
in the data yet. There is very limited fl uctuation of more traditional volatility forecasts 
around the 25%. For example, realized variance, exponential variance, asymmetric 
exponential variance, ARCH(2), GARCH(1,1), and implied volatility all deliver almost the 
same predictive power. Outliers to the downside are ARCH(1) and the seasonal vola-
tility model, which have rather low explanatory power. Outliers to the upside are the 
negative momentum and the intraday forecast models, which deliver improvements 
of 32% and 34%, respectively, which is a signifi cant step up from 25%. 

Regarding the models presented, it should be noted which models were chosen 
not to be presented although they have been tested. For instance, regarding season-
alities, we checked for other daily and monthly seasonal patterns, but this did not 
change the analysis’s result that the tested seasonalities do not improve forecasts. 

3 The author is a strong believer in John von Neumann’s quote, “With four parameters I can fi t an 
elephant, and with fi ve I can make him wiggle his trunk.”

EXHIBIT 1
Calibration Results

NOTES: We report calibration results of various optimized models. Models are fi tted to predict volatility of the S&P 500 over time. 
We use daily returns data spanning January 2000 to December 2020.

Best Model Specification

Constant a = 0.0001551
Length of trailing window N = 11

c = –0.84
cu = –0.89, cd = –0.82

a = 0.0000645, b1 = 0.2006, b2 = 0.3837

a = 0.0001046, b1 = 0.3255

a = 0.0000053, b1 = 0.9655, c1 = –0.8115

a = 0.0001506, d1 = 24.4/100000000,
 d2 = 1.91/100000000
a = –0.000095, d = 0.0057, λIV = 0

a = 0.000043, d = 0.0004, λMOM = 0.867
a = –0.0000044, d = 0.70, λRV = 0.358

Model

Constant Variance
Realized Variance

Exponential Variance
Asymmetric Exponential
 Variance

ARCH(2)

ARCH(1)

GARCH(1,1)

Seasonal

Implied Volatility

Negative Momentum
Intraday

MSQE ×
10,000,000

3.22
2.43

2.42
2.41

2.46

2.88

2.39

3.22

2.39

2.18
2.12

Average Daily Change
of Volatility per Annum

(p.a.) Forecast

0.00
1.05

1.39
1.27

3.36

3.28

1.27

0.01

1.20

1.60
2.62
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Obviously, another researcher might fi nd a seasonality that is predictive. The article 
shows an effective way to model and benchmark them. Also, with respect to the 
ARCH and GARCH models, larger lags up to four were tested with no signifi cant 
improvement in forecasting accuracy despite a much higher number of degrees of 
freedom.

EXHIBIT 2
Volatility Forecasts over Time
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(continued)

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r, 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
.



The Journal of Portfolio Management | 7February 2023

SUMMARY

This article tries to improve the understanding of the volatility forecasting problem, 
which, in the literature, is somehow and unnecessarily treated differently than any 
other forecasting problem. We unify notation between fi nancial and econometrical 
time-series models and clarify their links. We show that constant variance models are 
white-noise models, realized variance models are restricted AR(p) models, exponential 
variance models are restricted ARMA(p,q) models, ARCH models are AR(p) models, 
and GARCH models are ARMA(p,q) models. 

EXHIBIT 2 (continued)
Volatility Forecasts over Time

NOTES: We depict S&P 500 volatility forecasts (p.a., %) during the time frame 2016 to 2020 of various optimized models to illustrate 
the behavior of the estimates; the total time frame used for model estimation is 2000 to 2020. Annualized volatility is computed as 
σ × ×ˆ( )σ ×( )σ ×t( )tσ ×tσ ×( )σ ×tσ × 260 100. The y-axis is log scaled to allow better visualization of forecast variability when volatility is low and high.
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The empirical part of the article compares the forecast accuracy of 10 types of 
models in a joint dataset and runs a benchmarking analysis. All models are chosen 
to have three or fewer estimation parameters to control complexity risk and the 
risks of overfi tting. Notably, the study fi nds that complexity does not automatically 
improve forecasts. Effectively, it is hard to beat simple trailing variance estimates 
by a signifi cant degree. For instance, prominent academic models such as ARCH 
models underperform simple trailing variance models, and GARCH models provide 
only insignifi cant improvement despite an increased number of tuning parameters. 
We also fi nd that other models such as implied volatility–informed or asymmetric and 
seasonal models hardly demonstrate a comparative improvement relative to simple 
exponential variance or historical variance models. Only negative momentum–based 
and intraday return–based models showed signifi cant improvement.

I hope that this article allows for improved understanding of the volatility fore-
casting problem in fi nancial markets, ultimately leading to simpler but better vola-
tility prediction models that can be used in fi nancial risk management and portfolio 
management units.

EXHIBIT 3
Benchmarking Forecasting Accuracy

NOTES: Models are fi tted to predict the daily variance of S&P 500 returns over time. We use daily returns data spanning January 2000 
to December 2020. The MSQE reduction is defi ned as −(MSQE (Model)/MSQE (Constant Variance) − 1).
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